Journals and Books

Observer effect: How Intercepting HTTPS traffic forces malware to change their behavior

During the last couple of years there has been an important surge on the use of HTTPs by malware. The reason for this increase is not completely understood yet, but it is hypothesized that it was forced by organizations only allowing web traffic to the Internet. Using HTTPs makes malware behavior similar to normal connections. Therefore, there has been a growing interest in understanding the usage of HTTPs by malware. This paper describes our research to obtain large quantities of real malware traffic using HTTPs, our use of man-in-the-middle HTTPs interceptor proxies to open and study the content, and our analysis of how the behavior of the malware changes after being intercepted. The research goal is to understand how malware uses HTTPs and the impact of intercepting its traffic. We conclude that the use of an interceptor proxy forces the malware to change its behavior and therefore should be carefully considered before being implemented.

Identifying, Modeling and Detecting Botnet Behaviors in the Network

Garcia, S. (2014). Identifying, Modeling and Detecting Botnet Behaviors in the Network. UNICENUniversity. PhD Thesis. doi:(10.13140/2.1.3488.8006)

Abstract

Botnets are the technological backbone supporting myriad of attacks, including identity stealing, organizational spying, DoS, SPAM, government-sponsored attacks and spying of political dissidents among others. The research community works hard creating detection algorithms of botnet network traffic. These algorithms have been partially successful, but are difficult to reproduce and verify; being often commercialized. However, the advances in machine learning algorithms and the access to better botnet datasets start showing promising results. The shift of the detection techniques to behavioral-based models has proved to be a better approach to the analysis of botnet patterns. However, the current knowledge of the botnet actions and patterns does not seem to be deep enough to create adequate traffic models that could be used to detect botnets in real networks. This thesis proposes three new botnet detection methods and a new model of botnet behavior that are based in a deep understanding of the botnet behaviors in the network. First the SimDetect method, that analyzes the structural similarities of clustered botnet traffic. Second the BClus method, that clusters traffic according to its connection patterns and uses decision rules to detect unknown botnet in the network. Third, the CCDetector method, that uses a novel state-based behavioral model of known Command and Control channels to train a Markov Chain and to detect similar traffic in unknown real networks. The BClus and CCDetector methods were compared with third-party detection methods, showing their use in real environments. The core of the CCDetector method is our state-based behavioral model of botnet actions. This model is capable of representing the changes in the behaviors over time. To support the research we use a huge dataset of botnet traffic that was captured in our Malware Capture Facility Project. The dataset is varied, large, public, real and has Background, Normal and Botnet labels. The tools, dataset and algorithms were released as free software. Our algorithms give a new high-level interface to identify, visualize and block botnet behaviors in the networks.

Summary-schema-of-the-BClus-detection-method_W640.jpg

An Empirical Comparison of Botnet Detection Methods

The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset.

Survey on Network-based Botnet Detection Methods.

Botnets are an important security problem on the Internet. They continuously evolve their structure, protocols and attacks. This survey analyzes and compares the most important efforts done in the network-based detection area. It accomplishes four tasks: first, the comparison of previous surveys and the proposal of four new dimensions to analyze their classification schemes. Second, a new classification and comparison of network-based botnet detection proposals, that includes the definition of twenty desired properties of every botnet detection paper. Third, an extensive comparison between the most representative detection proposals. Fourth, the description of the most important problems and highlights in the area. We conclude that the area has achieved great advances so far, but there are still many open problems.