Master Thesis
Detecting malware and attacks by analyzing network traffic remains a challenge. Although there are several well-known detection mechanisms to accurately separate the malicious behavior of the normal, it is still extremely difficult to have a detection system that can handle all the situations that arise in the network. These known algorithms include machine learning techniques, static signatures and rules based on experience. In particular, the method most used today is based on the contribution of rules by a large community of analysts. The most important impediments to good detection are that: First, normal traffic is extremely complex, diverse and changing. Second, malicious actions change continuously, adapting, migrating and hiding as normal traffic. Third, the amount of data to analyze is huge, forcing analysts to lose data in favor of speed. And fourth, detection must occur in near real time to be of some use.